Good-practice examples of different small-scale sustainable energy projects under WISIONS initiative

Carmen Dienst
Wuppertal Institute for Climate, Environment and Energy
Research Group 1 - Future Energy and Transport Structures

GENUS
Slum electrification: challenges to be addressed
Nairobi 26 - 28.10.09
Overview

- General Background
- WISIONS - approach and activities
- SEPS project examples
 - Small Wind Power Generation Systems in Peru
 - Solar Shops in Unelectrified Areas of Namibia
 - Introducing solar lamps for night fishing at Lake Victoria
 - Biogas power as an off-grid electricity generating source in Sri Lanka
 - Micro-Factories For Led Based Household Lighting Systems In Tanzania
 - Electricity For Social Development (Phase I) (Togo; JVE)
- Conclusions and Outlook
General Background
Why did we build up WISIONS initiative?

Access to clean and affordable energy is
- necessary for future security of energy supply
- helping to reduce GHG-emission
- a prerequisite for economic + human development and for
- reducing poverty and health risk

➤ vital for achieving Millennium Development Goals

There’s increasing attention on Renewable Energy by political arena
(“Renewables 2004” in Bonn; Founding of IRENA; Current climate change and energy
future discussion...)

Promising examples and ideas exist, but still implementation often hindered
- Lack of technical know-how;
- Lack of co-operation and
- Financial, administrative and social barriers

➤ Necessary to foster more innovative sustainable energy projects
especially on smaller scale and promote knowledge transfer on good
practices
WISIONS
objective and activities 2004 - 2009

WISIONS is an initiative of Wuppertal Institute, financially supported by ProEvolution. It is successfully working since 5 years (since 2004)

- WISIONS objective is to combine spreading knowledge of existing successful good-practice projects with progressing the realisation of new project ideas

Activities
- PREP - Promotion of Resource Efficiency Projects
 - Brochures on specific issues to showcase good-practices on successful projects
 - Decision process based on SD criteria
 - Closed 2008
- SEPS - Sustainable Energy Project Support
 - Annual call for applications with a budget of 0,5 Mio. €
 - Innovative project ideas with high replication potential
 - The applications have to fulfil SD criteria and need an implementation strategy
 - 5 rounds so far; support of 47 projects in more than 25 countries
- Technology Radar (currently developed)
WISIONS Criteria

to ensure sustainable character of projects

SEPS
- **Obligatory Criteria**
 - Technical feasibility
 - Economic feasibility
 - Local and global environmental benefits (e.g. CO₂-Reduction)
 - Marketability and replicability
 - Sound Implementation strategy must exist

- **Additional Criteria**
 - Social and gender aspects
 - Employment potential
 - Co-operation with other stakeholders

PREP
- **Obligatory Criteria**
 - Project success
 - Replicability
 - Economic and technical feasibility
 - Innovation in solving market, technologies or other challenges
 - Durability and sustainability

- **Additional Criteria**
 - Social and gender aspects
 - Employment potential
 - Co-operation with other stakeholders
PREP Outputs

- Twelve brochures
 - Resource efficient construction
 - Energy and water
 - Sustainable Transport
 - Sustainable Tourism
 - Microfinance and Renewable Energy
 - Energy in Schools
 - Corporate Energy and Material Efficiency
 - Sustainable Biofuel Production and Use
 - Energy and Sustainable Food Processing
 - Energy and Poverty Reduction
 - Solar Cooling
 - Water for Energy and Energy for Water

All still available as download or paper brochure
SEPS Project Map
Sustainable Energy Project Support

Update: December 2008
SEPS projects examples

- Most of the applications submitted to SEPS calls dealt with energy access in rural areas and hardly any in informal urban settlements.
- Urban projects focussed on energy efficiency
 - e.g. in street lighting systems in India or
 - Efficient lighting in public buildings in Mexico, Mauritius and India
- Following examples show an excerpt of supported projects that can give hints for options to improved energy access/electrification
 - Small Wind Power Generation Systems in Peru (recently finished)
 - Energy Shops in Unelectrified Areas of Namibia (newly started)
 - Introducing solar lamps for night fishing at Lake Victoria (currently running)
Small Wind Power Generation Systems to Provide Clean Energy in Poor Rural Areas of Peru (Soluciones Practicas - ITDG)

Background
● Grid-connection in rural Peru is around 30%, five Mio. people / 40,000 villages are without grid
● ITDG has been working since 25 years in Peru
● Providing isolated communities with electricity in a sustainable manner through renewable energy
● Despite high wind potential, only a few wind mills had been installed
● ITDG developed a small-scale wind mill

Project Aim
● Showcase in a demonstration-project the first wind energy community of Peru

Selection process:
● Identification of region with high wind potential
● Willingness of Local Authorities and Population to work in the project - Community “El Alumbre” in Cajamarca
● Project was funded by several organizations
Small Wind Power Generation Systems in Peru
Activities carried out in the community

- **Socio-economic survey**
 - Family structure and rate of illiteracy; level of organization, skills
 - Energy demand; money spent for energy (Ø5.5 US$; income 28-142$)

- **Trainings for users, technicians and administration**
 - Training of users is most important for long-term sustainability; next to training, a user-friendly manual was prepared
 - Technician-administrator were trained to install, operate and maintain
 - Responsible person + assistant were chosen for 3 years to run the single firm “El Alumbre Rural Electricity Service Company”

- **Design + implementation of wind power generating system**
 - Check which type of energy is needed (AC, easiest to use)
 - Wind generator were produced in Lima; other components in Cajamarca; Efforts to incorporate local metal workshops were unsuccessful
 - Population was very motivated and supportive; users had to assemble their wind generator and build their control panel
Small Wind Power Generation Systems in Peru
Results and impacts

- Installation of a 100 Watt wind mill in every household in the community of El Alumbre (33 in total; monthly rate 3 US$)
- Local management model was implemented
- Five local technicians have been trained
- For implementation phase a committee was implemented to link beneficiaries and funding organizations, now control unit

Impacts

- Population use the energy for:
 - Lighting (100%)
 - Charging mobile phones (93%); former only 2% had mobile phones
 - Lighting for night knitting (57%)
 - 2 rural radio stations broadcast for 4-6 h/day

- Two 500 W wind generator (school, medical post), completed by a wind controller and inverter
 - 4 computers in the school and DVD player
 - 1 refrigerator to preserve vaccines

- Dissemination:
 - 300 people visited the project (authorities, university groups etc.)
 - Publishing of the results in media (Radio, TV, Newspaper etc.)

Costs:
 - Equipment: 50,000 US $
 - Total costs: 93,000 US $
 - Funding organizations: ISF, Green Empowerment, ITDG, WISIONS (1/3)
Business Opportunities With Solar Energy in Unelectrified Areas (Namibia; DRFN)

Background:
- In Namibia are 5,858 unelectrified settlements (2005) and only 1,500 are scheduled for grid-connection in next 20 years.
- Meanwhile the number of mobile phones is rapidly increasing.
- The Desert Research Foundation of Namibia (DRFN) did survey on the options for “Energy Shop”
- Findings of a former project and developed guidelines
- Energy shops are a core element of the Off-grid Master Plan, but none have been implemented yet; missing demonstration

Project Aim:
- The objective of the project is to provide basic energy services and promote business opportunities in the off-grid region of Namibia (informal settlements and rural regions).
- Ten suitable entrepreneurs shall be identified
- “Energy Shops” will give access to modern energy
 - solar home systems that offer electricity for cell phone charging, hair cutting, battery charging and lighting; provided with solar stoves
- Showcase of pilot projects
Energy Shops in Namibia
Activities and current state

- (1) Procure ten Solar Business Systems from local suppliers as per DRFN specifications
 - Two bids were accepted
- (2) Identify ten entrepreneurs in unelectrified rural and informal settlement areas
 - 24 Potential entrepreneurs were identified in ten appropriate regions and ten selected through interviews, field visits, specific criteria
- (3) Conduct basic technical training, business management and record keeping procedures
 - Currently running
- (4) Monthly monitoring and evaluation of business performance
 - Monitoring guidelines to be prepared
- (5) Final recommendations and draft national of roll-out plan
Promoting sustainable livelihoods at Lake Victoria by introducing solar lamps for night fishing (Osienala/GNF)

- 60,000 fishermen catch the Lake Victoria Sardine, which are caught at night with kerosene lamps (to attract zooplankton)
- Each lamp consumes about 1.5 l, around 6-8 l kerosene/boat
 - Costs half of fishermen’s income
 - Environmental risk (2% of kerosene spill to the water of Lake Victoria)
 ➜ Alternative lamps are needed
- A consortium of GNF (German NGO), Osienala (local NGO) and Osram (lighting producer) started in 2004 to work on an alternative
- Idea to use energy saving-bulbs (CF-lamps) with battery was tested as well as acceptance by fishermen ➜ positive outcomes
- Four Solar-Hubs for recharging of batteries (12V) installed that are managed by skilled hub managers (Kenya + Uganda)
 ➜ WISIONS supported the workshop for their training
 - Training on electronics, business administration, marketing
 - Dissemination of solar hub information to raise awareness
- Fishermen pay a deposit for lamp/battery (possible through micro credit) and 0.3 €/charge (saving of 200 €/a)
- Energy hubs in Kenya (for fishermen and households) are running
Conclusions
for electrification of informal urban settlements

- Most of SEPS applications did not focus on urban settlements...Why?
- Variety of small-scale RE technology options can not only be used for electrification of rural areas, but also for informal settlements (e.g. small-scale wind energy);
- Experiences of a lot of rural projects should be shared

Some lessons learned
- Models with active participation of the users are more promising
- Critical selection of partners, people and producers involved before implementation starts
- Training of technicians as well as users is crucial
- Contribution of beneficiaries (monthly rate/fee) is a basic requirement for long-term economic sustainability and to be replicable
Thanks…

www.wisions.net

info@wisions.net
carmen.dienst@wupperinst.org
General Background
Why do we need a Technology Radar?

- Since beginning of new century, there’s been an impressive growth of RET
 - Some grew 15 – 30% per year; Grid-connected PV solar increased even 60% annually
- However, global energy demand rises; and share of RE showed stagnancy $\approx 13\%$ of global primary energy demand (IEA conservative figures)
- Experiences show the need for improving the knowledge and information transfer among different actors

- Several studies on potential of RE technologies exist, BUT
 - comprehensive overviews are few
 - It’s important to illustrate the linkage between energy-related human needs and available technological solutions
- A wider pool of criteria beyond technical ones is necessary to evaluate suitability and sustainability of technologies in the future

\Rightarrow Technology Radar aims at offering an information tool that analyses not only technical issues, but also illustrates social and economic aspects as well as future perspectives